1 Bayes Theorem and Independence

1.1 Concepts

1. We use Bayes theorem when we want to find the probability of A given B but we are told the opposite probability, the probability of B given A. There are several forms of Bayes Theorem as follows:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})}=\frac{1}{1+\frac{P(B \mid \bar{A}) P(\bar{A})}{P(B \mid A) P(A)}} .
$$

In order to discern which form to use, look at the information you are given. If you are told $P(B \mid A)$ as well as $P(B \mid \bar{A})$, use the latter two methods but if you are only told $P(B)$, then use the first form.
We say that two events A, B are independent if $P(A \cap B)=P(A) P(B)$.

1.2 Examples

2. When rolling a fair 6 -sided die, are the events A that the number rolled is greater than or equal to 3 , and B that the number rolled is odd, independent?
3. There are 10 red and 10 blue balls in a bag. Someone randomly picks out a ball and then places it back and puts 10 more balls of that color into the bag. Then you draw a ball. What is the probability that the 10 balls added were red, given that you drew out a red ball?

1.3 Problems

4. True False If A, B are mutual exclusive events that are independent, then $P(A)=0$ or $P(B)=0$.
5. True False If A, B are independent events and B, C are independent, then A, C are independent.
6. I roll two die. Are the events that the first die roll is a 1 and that the sum of the two dice is a 7 independent?
7. What is the probability that a family with two kids has two boys if you know at least one is a boy?
